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We study a stochastic process that mimics single-game elimination tournaments. In our model,
the outcome of each match is stochastic: the weaker player wins with upset probability q ≤ 1/2,
and the stronger player wins with probability 1 − q. The loser is then eliminated. Extremal statis-
tics of the initial distribution of player strengths governs the tournament outcome. For a uniform
initial distribution of strengths, the rank of the winner, x∗, decays algebraically with the number of
players, N , as x∗ ∼ N−β . Different decay exponents are found analytically for sequential dynam-

ics, βseq = 1 − 2q and parallel dynamics, βpar = 1 + ln(1−q)
ln 2

. The distribution of player strengths
becomes self-similar in the long time limit and moreover, it has an algebraic tail.
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A wide variety of processes in nature and society in-
volve competition. In animal societies, competition is re-
sponsible for social differentiation and the emergence of
social strata. Competition is also ubiquitous in human
society: auctions, election of public officials, city plans,
grant awards, and sports are often decided by compe-
tition. Minimalist, physics-based competition processes
have been recently developed to model relevant compet-
itive phenomena such as wealth distributions [1–3], auc-
tions [4–6], social dynamics [8–10], and sports leagues
[11]. In physics, competition also underlies phase order-
ing kinetics, in which large domains grow at the expense
of small domains that eventually are eliminated [12, 13].

In this study, we investigate N -player tournaments
with head-to-head matches. The winner of each match
remains in the tournament while the loser is eliminated.
At the end of a tournament, a single undefeated player,
the tournament winner, remains. Each player is endowed
with a fixed intrinsic strength x ≥ 0 that is drawn from
a normalized distribution f0(x). For convenience, we de-
fine strength so that smaller x corresponds to a stronger
player and we henceforth refer to this strength measure
as “rank”.

The result of competition is stochastic: in each match
the weaker player wins with probability q ≤ 1/2 and the
stronger player wins with probability p = 1−q. Schemat-
ically, when two players with ranks x1 and x2 compete,
assuming x1 > x2, the outcome is:

(x1, x2) →

{

x1 with probability 1 − q;

x2 with probability q.
(1)

For q = 0, the best player is always victorious, while for
q = 1/2, outcomes are completely random. We restrict
our considerations to the case q ≤ 1/2, as the comple-
mentary situation follows by symmetry arguments. We
are interested in the evolution of the rank distribution,
as well as the rank of the tournament winner.

We find that the rank of the winner, x∗, decays alge-

braically with the number of players N as

x∗ ∼ N−β (2)

with the exponent β ≡ β(q) a function of the upset
probability. We emphasize that Eq. (2) implies that
the strongest player does not necessarily win the tour-
nament [14]. When the ranks of the tournament play-
ers are uniformly distributed, we find different values
for sequential and parallel dynamics: βseq = 1 − 2q and

βpar = 1 + ln(1−q)
ln 2 . Moreover, the rank distribution be-

comes asymptotically self-similar and it has a power-law
tail. We also extend these results to arbitrary initial dis-
tributions. Generally, extremal properties of the initial
distribution of player strength govern statistical proper-
ties of the rank of the ultimate winner.

We formulate the competition process dynamically by
assuming that each pair of players compete at a constant
rate. In this formulation, games are held sequentially,
and players are eliminated from the tournament one at
a time. Then the fraction of players remaining in the
competition at time t, c(t), decays according to

dc

dt
= −c2. (3)

Solving this equation subject to the initial condition,
c(0) = 1, the surviving fraction is

c(t) = (1 + t)−1. (4)

The tournament ends with a single player and this oc-
curs at time t∗, that can be estimated from c(t∗) = N−1.
Therefore the time to complete the competition scales
linearly with the number of players t∗ ' N . There are
other ways to define the dynamics; for example, the num-
ber of matches played is an equally sensible measure of
time. Our choice leads to slightly simpler expressions,
but as long as the two competitors are chosen randomly,
these two ways for characterizing time are equivalent.



2

We focus on the evolution of the fraction of players
with a given rank. Let f(x, t) dx be the fraction of players
with rank in the range (x, x+dx) at time t. This density
obeys the nonlinear integro-differential equation

∂f(x)

∂t
= −2p f(x)

∫ x

0

dyf(y) −2q f(x)

∫

∞

x

dyf(y). (5)

The first term accounts for games where the favorite
wins and the second term for games where the under-
dog wins. The initial condition is f(x, 0) = f0(x) with
∫

dxf0(x) = 1.
The rank distribution can be obtained by introducing

the cumulative distribution F (x), defined as the fraction
of players with rank smaller than x,

F (x) =

∫ x

0

dyf(y). (6)

The distribution of player ranks is obtained
from the cumulative distribution by differentia-
tion, f(x) = dF (x)/dx, while the total fraction
of players remaining in the competition is simply
c(t) = limx→∞ F (x, t). By integrating the master equa-
tion (5), the cumulative distribution obeys the closed
nonlinear ordinary differential equation

∂F

∂t
= (2q − 1)F 2 − 2qnF. (7)

The initial condition is F (x, 0) = F0(x) =
∫ x

0
dyf0(y).

We solve this equation using the transformation
G(x) = 1/F (x) [15] to reduce (7) to the linear equation

∂G

∂t
= (1 − 2q) + 2qnG. (8)

Integrating this equation with respect to time, we find
G(x) = [G0(x) − 1](1 + t)2q + (1 + t). Substituting the
initial condition G0(x) = 1/F0(x), we arrive at our first
result, the cumulative distribution of rank as a function
of time:

F (x, t) =
F0(x)

[1 − F0(x)](1 + t)2q + F0(x)(1 + t)
. (9)

From this, the actual density of player rank is obtained
by differentiation

f(x, t) =
f0(x)(1 + t)2q

[(1 − F0(x))(1 + t)2q + F0(x)(1 + t)]
2 . (10)

When the game outcome is random, q = 1/2, then the
properly normalized distribution of rank does not evolve
with time as f(x, t)/c(t) = f0(x).
Uniform Initial Distribution. To illustrate some gen-
eral features, consider the special case of a uniform initial
distribution, f0(x) = 1 for 0 ≤ x ≤ 1, and deterministic
games, q = 0. Then the initial cumulative distribution
is F0(x) = x for x ≤ 1 and F0(x) = 1 for x ≥ 1. The
time-dependent cumulative distribution (9) is

F (x, t) =
x

1 + xt
(11)

for x ≤ 1 and F (x, t) = c(t) for x ≥ 1. Similarly, the rank
distribution itself is f(x, t) = (1 + xt)−2 for 0 ≤ x ≤ 1.
Notice that for increasing rank x (weaker player), there
are fewer players with this rank. Thus surviving players
are progressively stronger as the tournament proceeds.
Quantitatively, the average rank of surviving players,
〈x〉 =

∫

dxxf(x)/
∫

dxf(x), is

〈x〉 = t−2 [ (1 + t) ln(1 + t) − t ] . (12)

Therefore, the average rank asymptotically decays with
time, 〈x〉 ' t−1 ln t, indicating that better players survive
to the late stages of the tournament.

We can write the cumulative distribution in the scal-
ing form F (x, t) → t−1Φ(xt), by multiplying and dividing
(11) by time. Here, the scaling function is Φ(z) = z

1+z ,

which approaches unity Φ(z) → 1 when z → ∞, consis-
tent with total density decay c ' t−1. In the long time
limit, the cumulative distribution retains the same shape
as the initial distribution, Φ(z) ' z, for z ¿ 1. The scal-
ing variable z = xt indicates that players with rank larger
than the characteristic rank x ∼ t−1 are eliminated from
the tournament.

Let us generalize these results to arbitrary q. In this
case, the cumulative distribution is

F (x, t) =
x

(1 − x)(1 + t)2q + x(1 + t)
, (13)

for x ≤ 1 and F (x, t) = c(t) otherwise. In the long
time limit, we may replace 1 + t with t, and also replace
1 − x with 1, since the rank decays with time. Then the
cumulative distribution approaches the scaling form

F (x, t) → t−1Φ
(

x t1−2q
)

. (14)

The scaling function remains as above

Φ(z) =
z

1 + z
. (15)

The scaling form (14) implies that the typical rank decays
algebraically with time

x ∼ t−(1−2q). (16)

Interestingly, the exponent governing this decay depends
on the upset probability. The larger the upset probabil-
ity, the smaller the decay exponent. Thus weaker players
can persist in a tournament when q approaches 1/2. For
completely random games, q = 1/2, the exponent van-
ishes and the strength of the typical surviving player does
not change with time.

A similar scaling law characterizes the rank of the tour-
nament winner as a function of the number of players.
From (4), the number of players remaining in the tourna-
ment, M , and the initial number of players N , are related
by t ∼ N/M . Using (16), when M players remain, the
typical rank is x ∼ (N/M)−(1−2q). Substituting M = 1,
we arrive at our second main result: the typical rank of
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the winner decays algebraically with the total number of
players, as in (2), with the exponent

βseq = 1 − 2q. (17)

Therefore, the smaller the tournament or the higher the
upset probability the weaker the winner, on average. In-
tuitively, small tournaments require only a small number
of upsets to produce a surprise winner.
General Initial Distributions. The findings in the
case of uniform distributions suggest that the behavior
of the initial distribution in the x → 0 limit governs the
long time asymptotics. Let us consider rank distributions
with a power-law behavior near the origin,

F0(x) ' C xµ+1, (18)

as x → 0 with µ > −1 so that the distribu-
tion is normalized. The rank density then scales as
f0(x) ' C(µ+ 1)xµ. Since the rank x decays with time,
the term (1 − F0)(1 + t)2q in the denominator can be
replaced by t2q and similarly, the term F0(x)(1 + t) can
be replaced by Cxµ+1t. Therefore, the scaling form (14)

becomes F (x, t) → t−1Φ
(

x t
1−2q
µ+1

)

, with the scaling func-

tion Φ(z) = Czµ+1/(1 + Czµ+1). Thus the typical player

rank decays with time according to x ∼ t−
1−2q
µ+1 . Simi-

larly, the rank of the winner decays with the number of
players as in (2) with βseq = 1−2q

µ+1 .

We conclude that extreme properties of the initial dis-
tribution fully governs the asymptotic behavior. In the
long time limit, the player distribution becomes self-
similar. Both the form of the scaling distribution and the
time dependence of the characteristic rank depend only
on the small-x behavior of the initial distribution. As
the tournament progresses, weaker players are gradually
eliminated and the initial distribution of player strength
governs the asymptotic rank distribution. A similar phe-
nomenology where extremal statistics governs long-time
asymptotics was found in studies of clustering in traffic
flows [16] and species abundance in biological evolution
[17, 18].

Like the cumulative distribution, the density of players
with given rank also becomes self-similar asymptotically,
f(x, t) → tβ−1φ

(

x tβ
)

with β = 1−2q
µ+1 and φ(z) = Φ′(z).

As noted earlier, the shape of the distribution is preserved
f(z) ∼ zµ as z → 0. The large argument behavior is

φ(z) ∼ z−µ−2, (19)

as z → ∞. This algebraic decay shows that the likelihood
of finding weak players in the tournament is appreciable.

The scaling behavior (2) refers to the typical rank of
the winner. The algebraic tail (19) suggests that the
average rank may scale differently than the typical rank.
For example, for compact uniform distributions (µ = 0),
the average is characterized by a logarithmic correction
as in (12), 〈x∗〉 ∼ N−(1−2q) lnN .

In the limit µ → ∞, the typical rank decays
slower than a power-law. When the distribution is

sharply suppressed near the origin, F0(x) ∼ exp(−x−ν),
then the typical rank decays logarithmically with time,
x ∼ (ln t)−1/ν , and correspondingly, the rank of the tour-
nament winner scales as a function of the number of play-
ers as x∗ ∼ (lnN)−1/ν .
Discrete Distributions. In many sports, the ranks of
tournament players are discrete and it is straightforward
to generalize our results to discrete rankings. Define fk

as the density of players of rank k, with k = 1, 2, . . . and

Fk =
∑k

j=1 fj as the corresponding cumulative distribu-
tion. Then the time-dependent distribution is a direct
generalization of (9):

Fk(t) =
Fk(0)

[1 − Fk(0)](1 + t)2q + Fk(0)(1 + t)
. (20)

In particular, the total density c(t) = limk→∞ Fk is again
(1 + t)−1, as in (4), while the rank density is obtained
from fk = Fk − Fk−1.

In spite of the equivalence for continuum and discrete
distributions, the latter has the feature that the frac-
tion of surviving top-ranked players, f1 ≡ F1, decays
with time as f1 ' t−1, while from (20), the fraction
of all other players decays as fk ' Akt

−2(1−q), with
Ak = fk(0)/[Fk(0)Fk−1(0)] for k > 1. In summary,

fk ∼

{

t−1 k = 1

t−2(1−q) k > 1.
(21)

Parallel Dynamics. Thus far, we addressed games that
are held sequentially with a single team eliminated at
a time. However, actual sports tournaments typically
proceed via round play in which games are held in parallel
and half of the teams are eliminated in each round.

We thus consider such round-play tournaments with
N = 2k players. Let FN (x) be the cumulative distri-
bution of the rank of the tournament winner and let
fN (x) = dFN (x)/dx be the corresponding rank density.
This distribution is now normalized

∫

dxfN (x) = 1.
Consider first a tournament with N = 2 players. The

rank distribution of the winner is

f2(x) = 2pf1(x)[1 − F1(x)] + 2qf1(x)F1(x). (22)

By merely changing the sign, the right-hand-side be-
comes identical to the right-hand-side in Eq. (5). In-
tegrating this equation, we arrive at an explicit ex-
pression for the distribution of the rank of the winner
F2(x) = 2pF1(x) + (1 − 2p)[F1(x)]

2. Clearly, this non-
linear recursion relation applies to every round of the
tournament and therefore,

F2N (x) = 2pFN (x) + (1 − 2p)[FN (x)]2. (23)

Iterating this equation starting with F1(x), we obtain
explicit expressions for the distribution of the winner for
N = 2, 4, 8, . . . Explicit expressions can be obtained for
the extreme cases of deterministic competitions (q = 0)
where 1−FN (x) = [1−F1(x)]

N and random competitions
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FIG. 1: The decay exponent β versus the upset probability
q. Shown are the values for the sequential case (17) and the
parallel case (26).

(q = 1/2) where FN (x) = F1(x). Generally, however, it
is difficult to obtain the counterpart of the exact explicit
solution (9), so we perform a scaling analysis.

Let us restrict our attention to uniform initial distri-
butions as above, F1(x) = x for x ≤ 1. For small-x,
we may neglect the nonlinear term in (23) and then,
F2(x) ' (2p)x, F4(x) ' (2p)2 x, and in general

F2k(x) ' (2p)k x. (24)

To obtain the asymptotic behavior, we write N = 2k.
Substituting k = ln N

ln 2 into (24), then FN (x) ' Nβ x

with β = 1+ ln p
ln 2 . Therefore, the cumulative distribution

of the rank of the winner follows the scaling form

FN (x) → Ψ
(

xNβ
)

(25)

when N → ∞. The scaling function is linear, Ψ(z) ' z,
in the limit z → 0, reflecting that the extremal statistics
are invariant under the competition dynamics.

The scaling form (25) shows that the rank of the tour-
nament winner decays algebraically with the tournament
size as in (2). Surprisingly, the decay exponent

βpar = 1 +
ln(1 − q)

ln 2
(26)

for parallel dynamics, differs from the decay exponent
(17) for sequential dynamics. The two exponents coincide
in the extreme cases, β(0) = 1 and β(1/2) = 0. The
inequality βpar ≥ βseq shows that round play benefits the
strong players (Figure 1). Indeed, in parallel play, all
players must face competition in each and every round
so that weak players are less likely to survive.

The source of the disparity between serial and parallel
play is fluctuations in the number of games. In sequen-
tial dynamics, the number of games played by each player
varies while in parallel dynamics the number of games is
fixed. Typically, such fluctuations have a negligible effect
in a broad class of stochastic processes. In elimination

tournaments there are significant variations in the num-
ber of games played and this effect is strong enough to
affect the scaling exponents.

Substituting the scaling form (25) into the recursion
(23), the scaling function obeys the nonlinear and nonlo-
cal equation

Ψ(2pz) = 2pΨ(z) + (1 − 2p)Ψ2(z). (27)

The boundary condition are Ψ(0) = 0 and Ψ(∞) = 1.
An exact solution is feasible only when there are no up-
sets: Ψ(z) = 1 − e−z for q = 0. Otherwise, we perform
an asymptotic analysis. As shown above, the small-z
behavior is generic, Ψ(z) ' z. At large arguments, we
write U(z) = 1 − Ψ(z) and since U ¿ 1, we can ne-
glect the nonlinear terms and then U(2pz) = 2qU(z).
This implies the algebraic decay U(z) ∼ z1−γ with

γ = 1 − ln 2q
ln 2p . As a result, the likelihood of finding weak

winners, fN (x) → Nβψ
(

xNβ
)

with ψ(z) = Ψ′(z), de-
cays algebraically

ψ(z) ∼ z−1+ ln 2q
ln 2p (28)

as z → ∞. This algebraic behavior is very different
from the exponential decay ψ(z) = e−z for determinis-
tic games. In contrast with sequential play, the exponent
depends on the upset probability. This large likelihood of
finding weak winners reflects that the number of games
played by the tournament winner scales logarithmically
with the number of teams.

In summary, we studied the dynamics of single-
elimination tournaments, in which there is a finite prob-
ability for a lower-ranked player to upset a higher-ranked
player. We obtained an exact solution for the distribu-
tion of player ranks for arbitrary initial conditions. This
distribution follows a scaling form in the long-time limit
that is determined by the extremal properties of the ini-
tial distribution. Generally, the likelihood of upset win-
ners is relatively large since the tail of the distribution
function decays algebraically with rank. The character-
istic rank of the winning player decays algebraically with
the number of players and the larger the upset proba-
bility, the slower this decay. Different decay exponents
are found for sequential and parallel play with the latter
generally larger.

These results quantify three simple facts about tour-
nament play. First, small tournaments are more likely
to produce a surprise winner. Second, weak players fare
better in sequential play where they may survive by be-
ing idle. Third, there is an appreciable probability for a
tournament to produce a surprising outcome.

Our study was stated in terms of game dynamics.
However, the underlying stochastic process is elemen-
tary. Starting with N independent and identically dis-
tributed random variables, elements are removed from
the system sequentially. In each step, two variables are
randomly picked and then with a fixed probability the
larger is retained, while with the complementary prob-
ability, the smaller is retained. We anticipate that this
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simple model has relevance in other contexts. For exam-
ple, this stochastic process also mimics the “survival of
the fittest” in evolution.

It will be interesting to use this theory to model real
tournament data, for example, by characterizing statis-
tical properties of the rank of the winner as a function
of the tournament size. Our theory provides a suite of
predictions concerning the distribution of rank and the

winning rank.
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